Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 203, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635069

RESUMO

BACKGROUND: Necroptosis-related long noncoding RNAs (lncRNAs) play crucial roles in cancer initiation and progression. Nevertheless, the role and mechanism of necroptosis-related lncRNAs in soft tissue sarcomas (STS) is so far unknown and needs to be explored further. METHODS: Clinical and genomic data were obtained from the UCSC Xena database. All STS patients' subclusters were performed by unsupervised consensus clustering method based on the prognosis-specific lncRNAs, and then assessed their survival advantage and immune infiltrates. In addition, we explored the pathways and biological processes in subclusters through gene set enrichment analysis. At last, we established the necroptosis-related lncRNA-based risk signature (NRLncSig) using the least absolute shrinkage and selection operator (LASSO) method, and explored the prediction performance and immune microenvironment of this signature in STS. RESULTS: A total of 911 normal soft tissue samples and 259 STS patients were included in current study. 39 prognosis-specific necroptosis-related lncRNAs were selected. Cluster 2 had a worse survival than the cluster 1 and characterized by different immune landscape in STS. A worse outcome in the high-risk group was observed by survival analysis and indicated an immunosuppressive microenvironment. The ROC curve analyses illustrated that the NRLncSig performing competitively in prediction of prognosis for STS patients. In addition, the nomogram presents excellent performance in predicting prognosis, which may be more beneficial towards STS patients' treatment. CONCLUSIONS: Our result indicated that the NRLncSig could be a good independent predictor of prognosis, and significantly connected with immune microenvironment, thereby providing new insights into the roles of necroptosis-related lncRNAs in STS.


Assuntos
RNA Longo não Codificante , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Necroptose , Prognóstico , Microambiente Tumoral
2.
J Diabetes ; 16(4): e13538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599827

RESUMO

BACKGROUND: The association between obstructive sleep apnea syndrome (OSAS) and mortality has not been extensively researched among individuals with varying diabetic status. This study aimed to compare the relationship of OSAS with all-cause and cause-specific mortality in US individuals with or without diabetes based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS: The study included participants from the NHANES 2005-2008 and 2015-2018 cycles with follow-up information. OSAS data (OSAS.MAP10) was estimated from the questionnaire. Hazard ratios (HRs) and the 95% confidence interval (CI) of OSAS for mortality were calculated by Cox regression analysis in populations with different diabetes status. The relationships between OSAS and mortality risk were examined using survival curves and restricted cubic spline curves. RESULTS: A total of 13 761 participants with 7.68 ± 0.042 follow-up years were included. In the nondiabetic group, OSAS.MAP10 was positively associated with all-cause, cardiovascular, and cancer mortality. In individuals with prediabetes, OSAS.MAP10 was positively related to all-cause mortality (HR 1.11 [95% CI: 1.03-1.20]) and cardiovascular mortality (HR 1.17 [95% CI: 1.03-1.33]). The relationship between OSAS.MAP10 and the risk of all-cause mortality and cancer mortality exhibited L-shaped curves in diabetes patients (both with nonlinear p values <.01). Further threshold effect analysis revealed that OSAS was positively related to death risk when OSAS.MAP10 exceeded the threshold scores. CONCLUSION: The relationship between OSAS and mortality differed among participants with or without diabetes. Individualized clinical treatment plans should be developed in clinical practice to reduce the risk of death for patients with different metabolic conditions.


Assuntos
Diabetes Mellitus , Neoplasias , Apneia Obstrutiva do Sono , Adulto , Humanos , Estudos de Coortes , Inquéritos Nutricionais , Causas de Morte , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/diagnóstico
3.
Aging (Albany NY) ; 162024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613803

RESUMO

OBJECTIVE: The study aims to examine the involvement of lincRNA00907 in the advancement of non-alcoholic steatohepatitis (NASH). METHODS: The examination was conducted to assess the expression of linc00907 in liver tissues from NASH patients and healthy individuals. High-fat diets induced NASH in mouse models, while palmitic acid/oleic acid treatment was used to create in vitro cell models. Various techniques, such as qRT-PCR, Oil Red O staining and gene knockdown/overexpression, were used to assess the impact of linc00907 on genes related to lipid metabolism and immunity, as well as intracellular lipid accumulation. Furthermore, dual-luciferase reporter assays were carried out to confirm the connection between miRNA-942-5p and linc00907 or TAOK1 mRNA. RESULTS: Linc00907 was found to be significantly upregulated in both NASH patients and NASH mouse models. Overexpression of linc00907 led to an increase in intracellular lipid accumulation, while knockdown of linc00907 resulted in decreased lipid content. It was found that miRNA-942-5p binds with linc00907, and their interaction was confirmed in dual-luciferase reporter assays. Additionally, TAOK1 was predicted to be a downstream target of miRNA-942-5p, and the upregulation of TAOK1 due to linc00907 was reversed by miRNA-942-5p overexpression. linc00907 overexpression reduces apoptosis but can be reversed by TAOK1 knockdown. The reduction of TAOK1 counteracted the impact of linc00907 on gene expression associated with lipid metabolism and immunity, as well as on the accumulation of intracellular lipids. CONCLUSIONS: Our research suggests that linc00907 functions as a competitive endogenous RNA (ceRNA) by sequestering miRNA-942-5p, thus increasing the expression of TAOK1 and encouraging lipid accumulation in hepatocytes, leading to the aggravation of NASH development. Targeting the linc00907/miRNA-942-5p/TAOK1 axis may hold therapeutic potential for the treatment of NASH.

4.
Future Med Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624011

RESUMO

Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.

5.
Nature ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599239

RESUMO

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores upon cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Surprisingly, cleavage-deficient D275A GSDMD is also palmitoylated after inflammasome stimulation or treatment with ROS activators, and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage, and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. zDHHC5 and zDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated in their N-termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that serves as a general switch for the activation of this pore-forming family.

6.
Front Immunol ; 15: 1302903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500886

RESUMO

Background: Immune checkpoint therapy, involving the programmed cell death 1 (PD-1) monoclonal antibody, has revolutionized the treatment of cancer. Tertiary lymphatic structure (TLS) serves as an immune indicator to predict the efficacy of PD-1 antibody therapy. However, there is no clear result whether the distribution, quantity, and maturity of TLS can be effective indicators for predicting the clinical efficacy of anti-PD1 immunotherapy in patients with colorectal cancer (CRC). Methods: Fifty-seven patients who underwent surgical resection and thirty-nine patients who received anti-PD-1 immunotherapy were enrolled in this retrospective study. Immunohistochemical staining and multiple fluorescence immunohistochemistry were used to evaluate the mismatch repair (MMR) subtypes and TLS distribution, quantity, and maturity, respectively. Results: A comprehensive patient score system was built based on TLS quantity and maturity. We found that the proportion of patients with score >1 was much higher in the deficient mismatch repair(dMMR) group than in the proficient mismatch repair(pMMR) group, and this difference was mainly due to intratumoral TLS. Patient score, based on the TLS evaluation of whole tumor, peritumor, or intratumor, was used to evaluate the efficacy of anti-PD1 immunotherapy. Based only on the intratumor TLS evaluation, the proportion of patients with a score >1 was higher in the response (PR + CR) group than in the non-response (PD) group. Multivariate analysis revealed that patient scores were positively correlated with the clinical efficacy of immunotherapy. Further analysis of immune-related progression-free survival was performed in patients with CRC who received anti-PD-1 immunotherapy. Patients with score >1 based on the intratumor TLS evaluation had significantly better survival. Conclusions: These results suggest that the patient score based on intratumor TLS evaluation may be a good immune predictive indicator for PD-1 antibody therapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Humanos , Estudos Retrospectivos , Neoplasias Colorretais/patologia , Prognóstico , Imunoterapia/métodos
7.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
8.
Brain Behav ; 14(3): e3469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494708

RESUMO

AIMS: Huntington's disease (HD) is a progressive neurodegenerative disorder with heterogeneous clinical manifestations. Identifying distinct clinical clusters and their relevant biomarkers could elucidate the underlying disease pathophysiology. METHODS: Following the Enroll-HD program initiated in 2018.09, we have recruited 104 HD patients (including 21 premanifest) and 31 health controls at Beijing Tiantan Hospital. Principal components analysis and k-means cluster analysis were performed to determine HD clusters. Chi-square test, one-way ANOVA, and covariance were used to identify features among these clusters. Furthermore, plasma cytokines levels and brain structural imaging were used as biomarkers to delineate the clinical features of each cluster. RESULTS: Three clusters were identified. Cluster 1 demonstrated the most severe motor and nonmotor symptoms except for chorea, the lowest whole brain volume, the plasma levels of IL-2 were higher and significantly associated with cluster 1. Cluster 2 was characterized with the most severe chorea and the largest pallidum volume. Cluster 3 had the most benign motor symptoms but moderate psychiatric problems. CONCLUSION: We have identified three HD clusters via clinical manifestations with distinct biomarkers. Our data shed light on better understanding about the pathophysiology of HD.


Assuntos
Coreia , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Biomarcadores
9.
Phytomedicine ; 126: 155148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387271

RESUMO

BACKGROUND: Finding a drug for early intervention in the hepatic fibrosis process has important clinical significance. Previous studies have suggested SUMOylation as a potential target for intervention in hepatic fibrosis. However, the role of SAE1, a marker of SUMOylation, in hepatic fibrosis is unknown. Additionally, whether ginkgolic acid (GA), a SUMOylation inhibitor, inhibits hepatic fibrosis by inhibiting SUMO1-activating enzyme subunit 1 (SAE1) should be further investigated. METHODS: Liver tissues of patients with hepatic cirrhosis and a rat model of hepatic fibrosis constructed with CCl4 (400 mg/kg, twice weekly) or TAA (200 mg/kg, twice weekly) were selected, and the degree of hepatic fibrosis was then evaluated using H&E, Sirius red, and Masson's trichrome staining. After knockdown or overexpression of SAE1 in hepatic stellate cells, the expression levels of ferroptosis and hepatic fibrosis markers were measured in vitro. After intervention with a ferroptosis inhibitor, the expression levels were again measured in vivo and in vitro. RESULTS: We first demonstrated that SAE1 increased in patients with hepatic cirrhosis. Subsequently, testing of the rat hepatic fibrosis model confirmed that GA reduced the expression of SAE1 and improved hepatic fibrosis in rats. Then, we used hepatic stellate cell lines to confirm in vitro that GA inhibited SAE1 expression and induced ferroptosis, and that overexpression of SAE1 or inhibition of ferroptosis reversed this process. Finally, we confirmed in vivo that GA induced ferroptosis and alleviated the progression of hepatic fibrosis, while inhibiting ferroptosis also reversed the progression of hepatic fibrosis in rats. CONCLUSION: SAE1 is a potential anti-fibrotic target protein, and GA induces ferroptosis of hepatic stellate cells by targeting SAE1 to exert an anti-hepatic fibrosis effect, which lays an experimental foundation for the future clinical application of its anti-hepatic fibrosis effect.


Assuntos
Ferroptose , Salicilatos , Humanos , Ratos , Animais , Transdução de Sinais , Cirrose Hepática/metabolismo , Fígado , Células Estreladas do Fígado , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/farmacologia
11.
Antonie Van Leeuwenhoek ; 117(1): 13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170218

RESUMO

A Gram-stain-negative, motile (by single polar flagellum) and rod-shaped bacterium, designated W1-6T, was isolated from a sediment of drainage ditch in winery in Guiyang, south-western China. Strain W1-6T showed the highest 16S rRNA gene sequence similarities with the type strain of Acidovorax wautersii (98.1%) and Simplicispira lacusdiani (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain W1-6T was placed adjacent to the members of the genus Simplicispira and formed a separat subclade. Cells showed oxidase and catalase negative reactions. The only respiratory quinone detected was ubiquinone-8 (Q-8). Summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) were predominant cellular fatty acids (> 10%) of strain W1-6T. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unidentified phospholipids were found in the polar lipid extraction. The genomic DNA G + C content was 65.6%. Strain W1-6T shared the highest digital DNA-DNA hybridization [dDDH, (27.6%)] and average nucleotide identity [ANI (84.3%)] values with the type strain of S. lacusdiani. The dDDH and ANI values were below the cutoff level (dDDH 70%; ANI 95-96%) for species delineation. The polyphasic characteristics indicated that the strain W1-6T represents a novel species of the genus Simplicispira, for which the name Simplicispira sedimenti sp. nov. is proposed. The type strain is W1-6T (= CGMCC 1.16274T = NBRC 115624T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , China , Ubiquinona , DNA , Drenagem , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética
12.
Bioorg Chem ; 143: 107036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141330

RESUMO

This study reports a thermostable glucose-stimulated ß-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential ß-glucosidase in biotechnology applications.


Assuntos
Gardenia , Glucose , Iridoides , Glucose/farmacologia , Proteínas Recombinantes/metabolismo , beta-Glucosidase/metabolismo , Metagenoma , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato , Temperatura , Cinética
14.
Int J Ophthalmol ; 16(11): 1766-1772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028519

RESUMO

AIM: To evaluate the therapeutic effect of folic acid combined with decitabine on diabetic mice. METHODS: The diabetic model of db/db mice were randomly divided into model group, folic acid group, decitabine group, folic acid combined with decitabine group, and C57 mice as normal control group. The density of retinal blood vessels and retinal thickness were detected by fundus photography and optical coherence tomography, respectively. Pathological changes of retina were observed by hematoxylin-eosin (HE) staining. The homocysteine (Hcy) in serum was detected by enzyme linked immunosorbent assay (ELISA). TdT-mediated dUTP nick-end labeling (TUNEL) was used to detect apoptosis in retinal tissue. Evans blue dye was used to detect the permeability of retinal blood vessels. The platelet endothelial cell adhesion molecule-1 (CD31) and vascular endothelial growth factor receptor (VEGFR) protein were detected by Western blot. The 3-nitrotyrosine (3-NT) and 4-hydroxynonanine (4-HNE) were detected by immunohistochemistry. RESULTS: The density of retinal blood vessels, retinal thickness, retinal vascular permeability and the proportion of apoptotic cells of retinal tissue in the model group increased significantly than control group (P<0.05). The Hcy in serum and the levels of CD31, VEGFR, 3-NT, and 4-HNE in retinal tissue increased significantly in the model group (P<0.01). Folic acid and decitabine both reversed these changes significantly, and the combination of the folic acid and decitabine worked best. CONCLUSION: The combination of folic acid and decitabine has a more significant protective effect on the retina in diabetic mice.

15.
Cell Death Dis ; 14(11): 733, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949877

RESUMO

Cuproptosis caused by copper overload is mediated by a novel regulatory mechanism that differs from previously documented mechanisms regulating cell death. Cells dependent on mitochondrial respiration showed increased sensitivity to a copper ionophore elesclomol that induced cuproptosis. Maternal embryonic leucine zipper kinase(MELK) promotes tumorigenesis and tumor progression through the PI3K/mTOR pathway, which exerts its effects partly by targeting the pyruvate dehydrogenase complex(PDHc) and reprogramming the morphology and function of mitochondria. However, the role of MELK in cuproptosis remains unclear. Here, we validated that elevated MELK expression enhanced the activity of PI3K/mTOR signaling and subsequently promoted Dihydrolipoamide S-Acetyltransferase (DLAT) expression and stabilized mitochondrial function. This regulatory effect helped to improve mitochondrial respiration, eliminate excessive intracellular reactive oxygen species (ROS), reduce intracellular oxidative stress/damage and the possibility of mitochondria-induced cell fate alternations, and ultimately promote the progression of HCC. Meanwhile, elesclomol reduced translocase of outer mitochondrial membrane 20(TOM 20) expression and increased DLAT oligomers. Moreover, the above changes of MELK to HCC were abolished by elesclomol. In conclusion, MELK enhanced the levels of the cuproptosis-related signature(CRS) gene DLAT (especially the proportion of DLAT monomer) by activating the PI3K/mTOR pathway, thereby promoting elesclomol drug resistance, altering mitochondrial function, and ultimately promoting HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose
16.
Arch Microbiol ; 205(9): 308, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594611

RESUMO

Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.


Assuntos
Armillaria , Armillaria/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Micélio
17.
Research (Wash D C) ; 6: 0184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398932

RESUMO

Mitochondrial dysfunction and glycolysis activation are improtant hallmarks of hepatocellular carcinoma (HCC). NOP2 is an S-adenosyl-L-methionine-dependent methyltransferase that regulates the cell cycle and proliferation activities. In this study, found that NOP2 contributes to HCC progression by promoting aerobic glycolysis. Our results revealed that NOP2 was highly expressed in HCC and that it was associated with unfavorable prognosis. NOP2 knockout in combination with sorafenib enhanced sorafenib sensitivity, which, in turn, led to marked tumor growth inhibition. Mechanistically, we identified that NOP2 regulates the c-Myc expression in an m5C-modification manner to promote glycolysis. Moreover, our results revealed that m5C methylation induced c-Myc mRNA degradation in an eukaryotic translation initiation factor 3 subunit A (EIF3A)-dependent manner. In addition, NOP2 was found to increase the expression of the glycolytic genes LDHA, TPI1, PKM2, and ENO1. Furthermore, MYC associated zinc finger protein (MAZ) was identified as the major transcription factor that directly controlled the expression of NOP2 in HCC. Notably, in a patient-derived tumor xenograft (PDX) model, adenovirus-mediated knockout of NOP2 maximized the antitumor effect and prolonged the survival of PDX-bearing mice. Our cumulative findings revealed the novel signaling pathway MAZ/NOP2/c-Myc in HCC and uncovered the important roles of NOP2 and m5C modifications in metabolic reprogramming. Therefore, targeting the MAZ/NOP2/c-Myc signaling pathway is suggested to be a potential therapeutic strategy for the treatment of HCC.

18.
Genes Dis ; 10(5): 2082-2096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492741

RESUMO

Accumulating evidence supports the association of somatic mutations with tumor occurrence and development. We aimed to identify somatic mutations with important implications in hepatocellular carcinoma (HCC) and explore their possible mechanisms. The gene mutation profiles of HCC patients were assessed, and the tumor mutation burden was calculated. Gene mutations closely associated with tumor mutation burden and patient overall survival were identified. In vivo and in vitro experiments were performed to verify the effects of putative genes on proliferation, invasion, drug resistance, and other malignant biological behaviors of tumor cells. Fourteen genes with a high mutation frequency were identified. The mutation status of 12 of these genes was closely related to the mutation burden. Among these 12 genes, LRP1B mutation was closely associated with patient prognosis. Nine genes were associated with immune cell infiltration. The results of in vivo and in vitro experiments showed that the knockdown of LRP1B promotes tumor cell proliferation and migration and enhances the resistance of tumor cells to liposomal doxorubicin. LRP1B could directly bind to NCSTN and affect its protein expression level, thereby regulating the PI3K/AKT pathway. Our mutational analysis revealed complex and orchestrated liposomal alterations linked to doxorubicin resistance that may also render cancers less susceptible to immunotherapy and also provides new treatment alternatives.

19.
Trends Immunol ; 44(8): 571-573, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414717

RESUMO

In a recent article, He et al. report that, in response to dietary protein antigens, mouse intestinal epithelial cells (IECs) accumulate a newfound 13-kDa N terminus of gasdermin D (GSDMD-N13), cleaved by caspase-3/7. Unlike the pyroptotic 30-kDa fragment, GSDMD-N13 translocates to the nucleus, inducing CIITA and major histocompatibility complex class II (MHCII) expression to promote type 1 regulatory T (T1r) cell development, thus revealing its role in balancing immunity and food tolerance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Piroptose , Animais , Camundongos
20.
Environ Sci Pollut Res Int ; 30(33): 80713-80731, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306881

RESUMO

Promoting green technology innovation through environmental tax is an important tool to achieve green development. Based on the data of Chinese listed companies from 2010 to 2020, this research examines the impact mechanisms of environmental tax policies on the quality and quantity of enterprise green technology innovation from the micro-enterprise perspective. The underlying mechanisms and heterogeneous effects were analyzed empirically using pooled OLS model and the mediated effects model. The results indicate that the environmental tax policy has an inhibitory effect on the quantity and quality of green patents, and the impact on the quantity is more significant. The mechanism analysis suggests that the environmental tax inhibits green technology innovation via accelerating capital renewal and environmental investment. Heterogeneity analysis shows that environmental tax has an inhibitory effect on green technology innovation behavior of large-scale enterprises and eastern region enterprises, while it has a boosting effect on green technology innovation of western region enterprises, and its effect on quantity of innovation is greater than that on quality. This study helps Chinese enterprises to better achieve green development from the perspective of green taxation and provides important empirical basis for achieving the win-win goal of economic growth and environmental development.


Assuntos
Conservação dos Recursos Naturais , China , Desenvolvimento Econômico , Política Ambiental , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...